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NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1563

FEASIBILITY COF APPLYING FIELD-ION EMISSION
TO ELECTROSTATIC ROCKET ENGINES
By N. Stanklewlcz
SUMMARY

The Wentzel, Kramers, Brillouin method was used to determine the lonization
lifetimes of hydrogen, lithium, sodium, rubidium, cesium, and xenon in an applied
electric field. These lifetimes were used in the analysis of a theoretical
plane-diode engine consisting of a grid emitter that field-ionizes the impinging
propellant. Results show that monatomic gaseous propellants are not sultable for
field-ion emission engines of this design because of the excessively high voltage

requirements for ionization. j

INTRODUCTION

The power expended in the lonization of a propellant 1s & primary source of
inefficiency in electrostatic rocket engines that employ contact lonization or
electron bombardment. An Important improvement in engine performance could be
effected if lonizatlon could take place at amblent temperatures and nearly 100
percent propellant utillzation efficiency. The idea of field-emission lonization
arises naturally from these considerations. It is the purpose of thils paper to
examine the feasibility of applying this effect to electrostatic rocket engines.

The lifetimes of hydrogen, lithium, sodium, rubidium, cesium, and xenon in a
high electric field are calculated by using the Wentzel, Kramers, Brillouin
(W.K.B.) approximation. Image potentials of the ion and electron caused by the
anode surface were neglected. Omission of these image forces can be Jjustified if
ionization takes place relatively far from the surface. A coulomb attraction be-
tween the cuter electron and the remaining atom was assumed for all the elements;
this is correct except for xenon. The resulting error for xenon is minor since
the prominent terms in the W.K.B. approximation are the field strength and the
ionization potential.

The Bohr theory is used to calculate the frequency of the electron in its
orbit, that is, the number of collislons per second that the electron makes with
the potential barrler created by the superposition of the coulomb fleld and the
external electrlc fileld.

The effective capture dliameter of an infinitely long, charged, cylindrical
wire 1s computed for a collimated beam of neutral atoms of given polarizability.
The lonization probability is calculated for these induced dipoles, whose force
of attraction i1s Into the high field region, and ylelds the relation between
fleld strength and cylinder radius necessary for lonlization.
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A theoretical engine is analyzed in which the emitting surface is a plane
grating of fine wires. It is shown that the space-charge-limited current is
equivalent to that of a plane diode in which the grid acts as the emitting plane.

THECRETICAL: BACKGROUND

Two types of phenomena are assoclated with the introduction of an atom into
an electric field. First, the degeneracy of the energy levels (with the same
principal quantum number n but with different orbital quantum numbers 1) can
be removed, giving rise to the Stark effect. ©Second, if the fields are high
enough, the phenomenon of autolonization, or electron tunneling through the po-
tential barrier, will take place within a finite length of time. The quantum
mechanical formulation of these related effects will now be very briefly re-
viewed.

The Schr¥dinger equation for a hydrogen-like atom (neglecting spin-orbit in-
teraction) in a constant external field F is
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(Symbols are defined in appendix A, and physical constants are presented in
table I.) Written in parabolilc coordinates,

X = En cos g
¥y = &n sin g (2)
1
Z=-2'(T]2-§2)
equation (1) separates into:
4
a2 4 Ki@ =0 (3a)
@
7 hZKZ
1afa\, zm (eF,a, g K1
E at (§d§)+h2(2 £* + Et TR KZ)L_O (3b)
2.2
1K
14 (), (e 4, g2 T 11 _
T]dT] (n d‘n)+ h2<2 M +ET] m ) K5)H—O (SC)
2
K2+K5+(§§€o)=o (3d)

Here y(&,7,0) = L(&)H(n)o(p), and K;, Kp, Kz are separation constants.

Notice that equation (3b) contains terms that go to -« for infinite values
of the coordinate £&. Reference 1 shows that such an equation gives no



quadratically integrable solutions and contains no stable stationary states; that
is, the effect of the electric field is to give aperiodic wave functions, and
hence a definite probability of finding the electron at large distances from the
nucleus. This seems contrary to what is observed in the Stark effect, namely,
definite spectral lines indicating perilodic wave functions that gilve a vanishing
probability of finding the electron at infinity. 1In reference 2, however, the
lifetime of this unstable state is calculated for the case of hydrogen and has a

value of lOlolo gseconds for a field of 1 volt per centimeter. The lifetimes are
still extremely long for the fields encountered in the Stark effect, and an ob-

server need never be aware of the autolonization phenomena. Spectral lines due

to transitions with higher principal quantum numbers have been seen to disappear
under the 1nfluence of an electric field.

EQUIVALENT ONE-DIMENSIONAL CASE

Because of the obvious difficulty in finding exact solutions to equation
(1), simplifying assumptions are invariably made. A good approximation (see

refs. 3 and 4) of the ionization time 1s obtained by solving the one-dimensional
problem, namely
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and applying the W.X.B. approximastion (see ref. 5). The situation is depicted in

the following potential diagram, which shows the external field superimposed on
the coulomb field:
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The penetration through the potential barrier is then given by
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The lifetime 1s found by taking the reciprocal of the penetration probabil-
ity D multiplied by the frequency v of the electron striking the barrier,
that 1is

T = (6)

The limits on the integral glve the end points of the barrier as shown in
sketch (a). Appendix B glves the solution of the integral and the ionilzation
time, in mks units, as

7= vl exp f—%e—i %ﬁ Ci/z[E(iZ‘,k) - c_rc(%f,k)] (7)

e 1/2
=l ( i ﬂeoﬁz)

e

k(Z,k) is the complete elliptic integral of the first kind, E(Z,%) is the con-
plete elliptic integral of the second kind, and & is the ionization potential

in volts.
ﬁ€o€2
A maximum field strength can be defined by letting -9Eax =3
this field strength that the barrier disappears and = = y-1.

where

It is at

The orbital frequency v 1s obtained by recourse to Bohr's theory, which
gives for hydrogen and the alkall metals

mee®

2nﬁ5(4neo)2

1
V== (8)

Table I gives the values of the principal quamtum number n and the ion-
ization potential € for the elements considered. Figure 1 shows the logarithm
of the lifetimes plotted against field strength of these elements.



TABLE TI. - FUNDAMENTAL AND DERTIVED CONSTANTS

(a) Miscellanecus properties of elements discussed

sec

log T,

Logarithm of lonization lifetime,

Element Chem- |Prin- |Ioni- |Atomic mass, | Polarlz- |[Boiling | Field energy
ical |cipal |zation m, ability, | point | of dipole at
symbol | quan~ | poten- kg a, (at 760 pr and
tum | tial, (£)(m) |mm Hg)}, ¥ /R
num- , T, =1 v/A,
ber v op €1
%
n {e)
Hydrogen® | H 1 |13.595 | 1.673%10727 | cemmmmem- SR R,
Lithium i 2 5.390 [ 1.151x10-26 | 1.3x1039]| 1609 6.01
Sodium e 3 5.138 | 3.82x20728 | 3,0000"39| 1153 18.84
Rubidium | Bb 5 4.176 | 1.419x10725 | 5.6x10°3] 973 414
Cesium Cs 6 3.893 | 2.205x107°° | 4,6x107%| 943 5.7
Xenon® Xe - |12.127 ] 2.18x10725 | 4.6x107%0| 1s6 11,09
(b) Physical constants
Avogadro's number, Ng, 6.0251x1026
atoms /kg atomic wt
Electronle charge, e, coulonbs 1.602x10-19
Electronic mass, m., kg 9.11x20-31
Planck's constant, h, (J)(sec) 8.6237x10-34
Boltzmann's constant, k, j/°K 1.38x10-23
Vacuum dielectric constant, eq, f/m|107/4nc?
BRef. 8.
PMonatomic hydrogen.
COrbital frequency assumed to be 1016 sec-1 for xenon.
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(a) Xenon and monatomic hydro- (b) Cesium, rubidium, sodium,
gen. and lithlum,

Figure 1. - Effect of electric-field strength on ionization lifetimes
according to W.K.B. approximation.



SINGLE-WIRE IONIZER

There are two problems connected with the constructlon of an efficlent lon-
izer using fleld-ion emission. TFirst, a very high field must be established by
some combinatlon of electrode geometry and applied voltage. Since there are
usually other restrictions that limlt the voltage, the high fleld must then be
produced by employing electrodes of minute proportions. This is somewhat un-
fortunate because the strong flelds now exist only in the rather restricted re-
gion of the immedlate vicinlty of the electrode. Thils presents the second prob-
lem. The incoming gas must be made to remain in this "ionization zone" for a
sufficient time to allow icnization to take place. The situation is remedied
scmewhat because of the dipole moment induced in the particles by the field and
thelr resultant attraction into the strong field region. Since thls energy of
atiraction i1s proportional to the square of the field strength, 1t is obvious

that a point electrode would produce a shorter range force (~l/r5) than a wire

electrode (~l/r3) and that the former would give a much smaller capture cross
section for ionization. For thls reacon thls section considers only the wire
emitter.

The electric field surrounding an infinitely long cylindrical wire of radius
ry; can be written

F- Fala (9)

T
where & 1s the field strength at the wire surface.

The potential energy U of an induced dipole in such a field is

A
¥ Faa

5 o (10)

U=

Here o 1is the polarizabllity; values are given 1n table I. In general, the
differential equation defining the orblt of a partlcle in a central field 1s
given by

(11)

where 1 1s the angular momentum of the particle; E, the particle energy, is
equal to its thermal energy of translation and is related to the angular momentum

by
1= 51/5555 (12)

where ¢ 1s the lmpact parameter.



Substituting equations (10) and (12) into (11) results in

dr

de = 13)
s2E - = @ F%rd 1/2 (
r2_l_ ) 2 a+-a _l_
g& s°E ré
Integration then yields the equation of the orbit:
1/z
S°E - % a,fgrg / 1
r = (14)
E 5 1 oo 1/2
sE - 3 aFirg
sin 5 6
sk

The minimum value of r occurs at

1 1/2
o - L g\
Tmin = —

E

If rpip S 1y, then a collision with the wire occurs. The resulting relation be-
tween the maximum energy and the impact parameter for a colllsion is

7 5
max 2 2 ; s _>. Ya (15)
s” - I‘a

E

Agsume that the wire 1s placed in a collimated, neutral particle beam of
flux density Jy whose energy distribution 1s Maxwellian. The differential
flux density dJy with an energy between E and E + dE is

gl/2 o-E/XT s (16)

a7 ZJN 1
N (k)32

The number of particles per second per unit wilre length having an impact
parameter between s and s + ds and with an energy lylng between E and
E+ dE is then 2dJy ds, the factor 2 occurs because both the top and the
bottom of the wire are being considered. The total number of collisions is then
found by integrating equation (16) over E wup to E ., and over s >r, and
then adding to thils the number of particles having an impact parameter less than

r
2
G"Za ri/(sz—rg)

a-

2/ 2E/ET gm g (17)
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N = 2y, +
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Carrying out the integration over E leaves

” - 5 ol
l 2 2 1/2 l 2 - l/Z -
= aFcr = o Fors 2 .2
&= 27 + |2 >78te a 2 [[277aa kT(s%-r5)
= r erf|————5< s - e
Nre kT(sz- rg) “/E kT(SZ- rg)
Ls, Tg
(18)
With the substiltutions
1 o
"2- G.fa s
i v =, (19)
equation (18) becomes
co [+¢] ) €
_ 1/2 0 . 1/2 - T
N = adyrg {1 + erf —EEL——) dy - —= (;E—-—~) e ¥ dy
5 y2 -1 /® ARG
= 2T3Rq (20)

where Ry, 1s the effective capture radius. A plot of Ra/ra against € 1is
shown in figure Z.
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Fleld energy of an induced dipole, ¢, in units of T

Figure 2. - Ratlo of effective collision radius to wire
anode radius as function of fleld energy of Induced
dipole for an infinltely long wire ancde.



The probability that an atom will be lonized on passing through a region of
high field strength is given by
dt

P=1-e " (21)

A conservative estimate of the ionization efficiency of a beam of particles
can be made by considering only the fast-moving ones in a direct collislon with
the wire. These particles will have the smallest residence time and hence will
define a minimum ionization probability.

For an atom whose impact parameter 1s zero (no angular momentum) the veloc-
ity through the field is

d 2
S (22)

where U 1is the potential energy of an induced dipole given in equation (10) and
E is the initial thermal energy of the atom. Therefore,

2\1L/2
- [E6 L)) @

The field surrounding the wire is given in equation (9), and differentiating
glves the relation between dr and 4d%F:

Z.r. AF
ar = - —2— (24)
¥
In terms of % the transit time becomes
Fr., dF
at = 238 (25)

2\11/2
fz[_g_(E . o )]
I, 2
Substituting equation (25) into equation (21) gives the lonization proba-
bility entirely in terms of &
Z,
g

(26)

o F)F° [fg b+ 9&{3)]1/2

Setting the integral equal to unity gives an icnization probabllity of 63
percent. The wire radius necessary to achileve this probability 1is then deter-
mined by integrating over the fleld strength from zero to jg:
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' 172
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(27)

The integral in equatlon (27) was computed numerically for E = 4kT at the
boiling point of the gas at atmospheric pressure; the results are given in fig-

ure 3.1 Over 98 percent of the particles have energles less than 4kT, according
to the Boltzmann distribution, and of these at least 63 percent will be ionized
in a direct collision if the relation in equatlon (27) is realized. For indirect

collisions the particles remain in the field a longer time and, therefore, will
also be lonlzed.

GRID IONIZER

The potential due to the uniform grid of wires (shown in sketch (b)) with a

fe——~

(v)

lHydrogen is not Included in this calculation because 1ts lifetime as plot-

ted in figure 1(a) is for the monatomic gas rather than for its natural molecular
state.
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Figure 3. - Wire anode radius as funetion of anode field strength for various
clements. Translational thermal energy of 4kT at atmospheric-pressure boll-
ing temperature T, where k 1s the Boltzmann constant.
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grid spacing a along the x-axis is given by the real part of the function
(ref. 5)

W= -K ln(Z sin l(ff) (28)

The potential is, then,
V=Va-K1n4(sin2-gx+ sinhzgy) (29)

The field strength is also obtalned from equation (28) and is

*
:—.@.W-.,_:}EKCO"[;
a

= * (30)
Z

wla
[\

The asterisk denotes the complex conjugate. The constants X and Vg are

evaluated in terms of the field strength on the surface of a grid wire and the
arbitrary zero of potential. The fileld strength for small =z 1is

1

g K

i
®]

K
. (a1)
7 Z

g

At r, the magnitude of the field strength is Z,; thus, K = Zr.. The

zero of potential will be taken at a distance b from the grid, a distance equal
to the accelerator spacing. Since b >> a,

sinh? T p o £ o27/a >> 442 T o
a 4 a

and therefore
21
Va =3§ra—a—b (32)

In order to retain the previous single-wire analysis in its application to
the grid surface, it will be necessary to space the grid wires so that the local
electric field about any individual wire behaves as a l/r field at least up to
r = Ry, the effective capture radius. The circular sine and the hyperbolic
sine functions are equal to each other for small arguments and can be approxi-
mated by the value of the argument. Thus, for & = 0.3, sin @ = 0.2955, and
sinh @ = 0.3045.

The equipotentials given in equation (30) are then early circles for

r<0.3 (

[N
N

2 2
sin? ’E‘ x + sinh? g y = (g) (x2 + y2) = (g) r2 < (0.3)2;

o

1z



When r = Ry, equation (33) will be made to hold and hence the grid spacing
will be fixed in terms of the wire radius. The value of ayj, Irom equation
(34) is, therefore,

8min = 10-5 Ry (34)
3.2
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Figure 4. - Potentlal at anode a&s functlon of wire anode radius for 63 percent ionizatlon efficiency.

Figure 4 shows a plot of the grid voltage, gilven by equation (32), as a
function of wire radius. The condition in equation (34), as well as the data
given in figures 2 and 3, was used in calculating these potentials. The accel-
erator spacing b was chosen to be 2 millimeters, which 1s probably a practical
minimum for the plane-diode engine.

Equation (34) 1s also used to yield the angle that a collimated beam of
neutrals should make with the normal to the grid plane so that all the particles
in the beam can pass within a capture area defined by R,. The relation between
the effective capture radlus and the angle of incidence of the neutral beam

2R
® > cos™+ —f =~ 799 (35)

can be derived from sketch (c).

A problem peculiar to the ionization of a gas by field emission arises when
it is desired to calculate the maximum current density attainable. For space-
charged-limited currents the boundary condition is such that the field strength
vanishes on the emitting surface. This condition can never be applied to the
isolated wire or point emitter in field emission, for ionization quickly ceases

13



when the field drops below a certain level. The situation is somewhat different,
however, for a grid of wires. Equation (30) shows that the potential of the grid
surface very rapidly approaches that of a plane. It is estimated 1n appendix C
that the saturation of this plane diode results in only a 3.7-percent saturation
of the individual grid wires. The local fields about the individual wires should
hardly be affected.

Grid normal
A
- /’
o ZRg,
r 8
/ a /
I‘/f/

Neutral
beam

(c)

CONCLUDING REMARKS

The voltages necessary for the successful operation of an engine of this
design that employs the fleld-ion emission technique seem to be beyond present
capabilities, at least for monatomic gaseous propellants. Besides the problem of
attaining high voltages, a related problem presents 1tself, namely, the high spe-
cific impulse that results from these low-mass particles belng accelerated to an
excessive velocity. Theoretically thls problem could be alleviated by the use of
an accel-decel system. Heavier particles such as molecules or colloids would
also give a lower specific lmpulse and would therefore be more adaptable to a
field-emission engine though the former would introduce fragmentation problems
in the high field. The greater polarizability and the lower thermal velocitiles
of the cclloids will result in somewhat larger cross sections for lonization.
Perhaps further study will show that field emission is a workable means of charg-
ing these particles.

Despite the pessimistic results for the particular elements studied in this
report, it is felt that field-emisslion ionization is still an atiractive method
of producing ions. The fact remains that lons can be produced without excessive
difficulty by usling needle-shaped anodes and only moderate voltages. The basic
problem in electrostatic engines will be contalnment, that is, keeping the neu-
tral particles in the vicinilty of the high field for a long enough time.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, OChio, September 27, 1962
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APPENDIX A

SYMBOLS
atomlc weight per ionlc charge
potentlal turning poilnt, grid spacing
potential turning point, accelerating distance
function defined in egs. (B2) and (B3)
penetration probability

initial thermal energy of atom; complete elliptic Integral of
second kind

electronic charge

ionlzatlon potential

applied electric field

electric fleld at cylindrical anode surface
Planck's constant divided by 2=xn

space~-charge-limited current per unit length for diverging
cylindrical flow

flux denslty of neutral beam

plane-diode current per unit length of grid emitter
current density

a constant, complete elliptic integral of first kind
separation constants (see eq. (3))

Boltzmann constant

functions defined in eqs. (3a), (3b), and (3c)
angular momentum and orbital quantum number
electronlc mass

particle mass

number of partlcle collislons with emitter wire per second

15



n princlpal quantum number

P probablility of lonization

Ry effective capture radius for ionization
r spherical coordlnate; range force

Ty wire anode radius

8 Impact parameter

T temperature
-t time

U potentlal energy

u durmy variable

v electrostatic potential
Vs potential at anode

W complex potential

Z atomic number

X,¥,z Cartesian coordlnates

N function defined in eq. (19)

Z x + iy

a polarizability

B Langmulr function for cylinders

€ field energy of dipole in units of kT
€0 dielectric constant of a vacuum

€1 field energy of dipole in units of kT at boiling point and £ = lv/A
0 angle of Incidence of neutral beam

8 azlmuthal angle

u reduced mass

v orbital frequency

16



£,m,9 Dparabolic coordinates

T lonlzation lifetime

g wave function, soclution of Schr¥dinger's equation
Subscripts:

max maximum

min minimum

17



APPENDIX B

SOLUTION OF TRANSMISSION PROBABILITY

According to the W.K.B. approximation, the lifetime of an atom 1is obtained
by combining equations (5) and (6) and carrying out the integration:

[ b 1/2

2-/2m 2

= y~L exp 7 e/ (eE',—efz— © ) dz
a8

411(—:02

-

b 1/2
st e@% -/ 2mge fl/z f (—22 +';’§. 7 - 47;:0.?) Z-l/2 dz (B1)

a

1

The roots of the integrand are:

e e |_ ¢

a =2—~—'(l — l - e 2):.'%7.0_ (Bz)
€ e \_ €&

b=2f(l+ Vl“ﬁesz)zzfc““ (33)

with 21/2 = y and equations (B2) and (B3) substituted, equation (Bl) takes
the form

4 /2 o4
1=yt e@[g Ve / V@ - ¥3)(y2 - a) ay (B4)
_\/5

This integral can be written in terms of elliptic functions (ref. 6, p. 57,
formula 218.11)

W ul
/ V(b - 789 (y% - a) ay = (b - a)? % / snu cn®u du (B5)
.\/-a-

0]

where sn and cn are the elliptic sine and cosine functions and uj = K(%,k)

is the complete elliptic integral of the first kind, in which

k= g2 2 (B6)
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Integrating equation (B5) leaves

(bW}ga)Z 5;4»B2 - X8)E(u) - 2(1 - k%)u - kZsn u cn u dn u]i
= % bl/z [(a + b)E(lg’k) - ZGK(-TZ-I,k)] (B7)

In terms of Ci,

K
0

(o ;/%)2 14 [(2 _ k2)B(u) - 2(1 - k2)u - kPsn u cn u dn u]
3k

g3/2 1 %
—'_%/—— ~F cH*? [E('z"k) - C-K('z"k)] (B5)

and the final form of the lifetime 1s

=yt ex_p{i_;_e_ 8;{2 C_]F/Z[ (2’k) - C K( )]} (B9)
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APPENDIX C

SPACE-CHARGE-LIMITED CURRENT OF GRID EMITTER
It 1s desired to calculate the 1imiting current between the two cylinders
r, and Ry and find its fraction of the limiting plane-diode current per wire.
The limited current denslity for a plane diode 1s glven by Child's law (ref. 7):
3y = 5.467x10'8A‘1/2v§/2b'2 amp /m? (Cc1)
The current per wire per unit length of grid is then
Jp = 2Rgad (cz)
Substituting equation (Cl) into (C2) ylelds

-7,-1/2.3/2, -2
Jp = 1.093x107'A / Vé/ bRy, (c3)

The space-charge-limited current per unit length for diverging cylindrical
flow 1s given by the Langmuir relation (ref. 7):

Je = 3.43x10"TA"Y/2(ay) 3/ 2R 152 (ca)

The ratlo of these two currents measures the degree of current limitation
of the grid wires in terms of a space-charge-limlted diode:

_, vg/? p%Rz
= = 0. 319 5 5
Ie 32 pe (Cs)
The term AV 1s the difference in potential between r, and Ry, and
Ry,
AV = Zr, ln-;; (cs)

The potential V, 1s defined in equation (32). The worst case occurs when B
and Ry are large and b 1s small; then J'P/JC is at 1ts largest.

With b = 2x1073 meter, v, = 107 meter, R /r, = 10, and B = 1, it is
found that
Ip

7 = 0. 037 (c7)

The amount of current needed to saturate the plane diode is at most only 3.7 per-
cent of the current needed to saturate the individual grid wires.
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